Array
[5][3][4][10] ->values
[0][1][2][3] ->index
Linked List
-Head
-Tail
-Middle
/*
[10|pointer]->[20|pointer]->[30|pointer]
*/
Stack
-Push
-Pop
-Top
-Peak
/*
[ 20 ] <--Push Or Pop From One Side
[ 15 ]
[ 10 ]
[ 5 ]
*/
Que
-Push
-Enque
-Deque
/*
Pop From Another Side <--[5][10][15][20] <--Push from One Side
*/
Tree
-Root
-Left
-Right
/*
root
/ \
/ \
Left Right
/ \ \
/ \ \
Left right Right
Traversal
1.PreOrder(Root,Left,Right)
Regressive(root):
if(root!=null)
print(root.data)
Regressive(root.left)
Regressive(root.right)
2.InOrder(Left,Root,Right)
Regressive(root):
if(root!=null)
Regressive(root.left)
print(root.data)
Regressive(root.right)
3.PostOrder(Left,Right,Root)
Regressive(root):
if(root!=null)
Regressive(root.left)
Regressive(root.right)
print(root.data)
--------Types
Binary Tree
1.Each Node Contain Pointer Of Left And Right Child
2.parent of node called root
3.child of node is known as child
4.node not have any child known as leaf
root
/ \
/ \
left right
/ \ / \
/ \ left right
left right
Binary Search Tree
1.Right Of Tree Node Values Must Grater value of compare to Root.
2.Left Of Tree Node Values Must Less value of compare to Root.
AVL Tree
1.Self Balancing Tree
2.Must Left And Right tree Height Difference is -1,0,1
*/
Graph
-Node
-Path
1--------2
/ \
/ \
4------5-------3
Comments
Post a Comment